logo

Artificial intelligence and machine learning in healthcare

Machine learning is an artificial intelligence (AI) technique that can be used to solve various tasks. Machine learning algorithms can analyze large amounts of different data with accurate results.

Increased use of information systems in the health service and the digitization of patient information generates large amounts of data. As a result, the healthcare sector has a lot of data that can be difficult to interpret. Machine learning can be an opportunity to systematize and present the large amount of information and data in an intuitive way.

Machine learning systems differ from traditional software systems. Machine learning uses self-learning algorithms that continuously improve. Each algorithm has its strengths and weaknesses, so it's important to try several algorithms to find out which ones work best.

In healthcare, machine learning can be used in three areas:

  • Interpretation of medical images (eye diseases, radiology, pathology)
  • Prognostics (dementia, metastatic cancer, stroke)
  • Diagnostics (oncology, pathology, rare diseases)

Healthcare is becoming more proactive with the help of artificial intelligence and machine learning, but there is still a need for more research and development before the potential can be fully realized. Developments in the interpretation of medical images have come the furthest, and much will happen here in the coming years. It will take around five years before the prognostics area is ready to use machine learning. Diagnostics is the most complicated area of healthcare, and it will take around ten years before machine learning solutions can be used.

Artificial intelligence and machine learning in healthcare

Meet future Alva - sharing health data across borders

Imagine a world where you and healthcare professionals can use and share your health data for your best, regardless of the country.

13-06-2019

Lærer datamaskinen å finne risikopasienter

En vanlig komplikasjon blant eldre pasienter etter narkose og operasjon, er å bli forvirret. Men tilstanden, som kalles «postoperativt delirium», er ofte vanskelig å oppdage. I Tromsø har de lært datamaskiner å identifisere pasienter i risikosonen.

31-05-2019

Secure e-health in the cloud

The EU-funded project Asclepios aims to build a cloud-based e-health framework that protects users' privacy and prevents attacks.

03-05-2019

Kunstig intelligens - konferanse i Bodø, juni 2019

I juni 2019 skal det handle om kunstig intelligens og maskinlæring i helsetjenestene. En nasjonal konferanse arrangeres i Bodø, med foredragsholdere fra blant annet IBM Watson og den verdenskjente Mayoklinikken.

26-03-2019

Kronikk: Ja til sekundærbruk av helsedata

Vi mangler en forståelse for, og et lovverk som tillater, at helsetjenester også har som formål å produsere og bruke helseinformasjon for så vel den enkelte som for fellesskapet.

14-01-2019

WHO symposium in Copenhagen, February 2019

On February 6-8, our centre will co-host a digital health symposium in Copenhagen, together with WHO/Europe.

07-01-2019

Ny rapport om helsedataanalyse

Her er vår ferske rapport om helsedataanalyse. Målet med den er å bidra til bedre forståelse av helsedataanalyse, og hvordan nye metoder kan komme til nytte i helsetjenesten.

14-06-2018

Viser vei i ny og kompleks kunnskap

Avdeling for helsedataanalyse arrangerte 4. og 5. juni en workshop om helseanalyse og digital fenotyping. Gjestene kom fra USA og Italia samt norske institusjoner.

08-06-2018

A fresh take on clinical decision support

Doctors want more clinical decision support, to give patients the best treatment. However, developing such IT-systems is expensive, and they can seldom be used across doctors’ offices or hospitals. Now, e-health researchers might have found a solution, using artificial intelligence.

09-03-2018

Norge – en stormakt innen helseteknologi

Hvis næringsliv, forskning og det offentlige Norge klarer å samarbeide like godt som i oljeindustrien, kan vi utvikle verdensledende digitale helseløsninger. Dette, og mye mer, skriver Gunnar Hartvigsen om i en kronikk i Nordlys.

28-11-2017
    3