

Taridzo Chomutare

tch023@student.uit.no, Mobile: 91563026
Page 1� of 5�

University of Tromsø
Computer Science Department

INF3791
Practice Week at NST

Project: Symptom based disease surveillance in the North Norwegian
Health region

Investigate methods and solutions for message polling through firewalls for jabber (XMPP)
servers. Compare the solutions to the Snow Agent system polling mechanism. Write a short

report and a presentation of your findings.

16-20 April 2007

Taridzo Chomutare

tch023@student.uit.no, Mobile: 91563026
Page 2� of 5�

Introduction

Jabber, which has changed its name to eXtensible Messaging and Presence Protocol (XMPP), is
an instant messaging (IM) protocol that has emerged recently. The protocol is based on open
standards and features have been added to it to include VoIP and file transfer. It is used by many
popular websites and applications such as Google Talk and Gizmo Project.

XMPP now uses port 5222 to connect to servers all over the internet. An XMPP server has the
ability to forward server connection requests to other servers on the network. Using the DNS
address of where the targeted user resides, the server can connect with the user anywhere. As can
be guessed, the user name or Jabber ID (JID) has to have a DNS address portion. The JID is of
the form user@server.com/mobile :

- user = user ID
- server.com = DNS address
- mobile = user resource

XMPP can connect to any network as long as the port (normally 5222) is open on the server. In
most cases, however, the port is closed, in which case the server would have to open the port and
configure it for incoming connection requests. This opens security holes, and systems
administrators would rather keep the port closed. Messaging under such conditions require
special techniques, some of which are discussed in this paper.

Snow Agents System (SAS) Polling Mechanism

Of interest is the messaging architecture when the networks are behind firewalls and yet they
need to communicate. A firewall makes it difficult to connect to the network and SAS introduced
a connection manager (proxy) for messaging between networks. The proxy acts as a tunnel by
forwarding all requests to their respective destinations. The diagram below illustrates this
scenario:

Taridzo Chomutare

tch023@student.uit.no, Mobile: 91563026
Page 3� of 5�

All the different servers will deposit their requests in the post office computer. The other
networks keep polling the post office for messages in their respective “mail boxes”. There is no
direct communication between the networks since each network is behind a firewall and does not
accept incoming connection requests.

Messages are then relayed to the target as responses to the requests (that is, GET and POST) that
come as polling. The networks poll the post office for messages at predefined intervals.
Bandwidth is lost by polling the proxy even when there are no messages. With sufficiently high
number of connections, a considerable amount of bandwidth could be wasted. The delay in
message delivery could be up to X time units, where X is the polling interval. In situations
that require high performance, the delay could be significant hence the need to find alternative
solutions.

Alternative

XMPP has come up with an ingenious solution for connections where the firewall forbids even
outgoing connections on port 52222. This came as a replacement of the extension XEP-0025:
Jabber HTTP Polling. The solution also uses HTTP on both port 80 and 443, for normal and
secure connections, respectively. The name of the extension is XEP-0124: Bidirectional-streams
Over Synchronous HTTP (BOSH) and has been recommended since 26 July 2006 when XEP-
0025 was deprecated. BOSH is based on a sustainable HTTP connection so that the recipient can
get the message as soon as it is sent because the connection is kept alive for longer periods.

By using HTTP port 80/443 instead of the Jabber standard port, the clients can send and fetch
messages without any restrictions. The XMPP XML data is embedded in the HTTP message and
shares the connection with other HTTP requests unrelated to XMPP. This is a huge advantage
considering that many firewalls allow HTTP access anyway.

The protocol works by emulating bi-directional connections using synchronous HTTP request-
response pairs. There is no polling or any asynchronous chunking. The trick is to keep the
connection alive for as long as it takes. However, HTTP naturally does not allow keeping alive a
connection for too long since this opens up security holes.

The client encourages the proxy not to send replies unless it actually has some data for the client.
This is in contrast to where the proxy would just send empty responses, thereby wasting
bandwidth. The proxy will only send a response when there is some data, after which the client
immediately sends another request, which is not replied to until some data comes again. The
vicious circle goes on and it is easy to see how this saves bandwidth.

Discussion: Polling vs. Binding

Binding uses a push-model as opposed to the pull-model used by polling. Theoretically, the push
model is better and is the basis of many applications today. The push-model is the architecture of
the future as we see application tending towards alerts and reminders rather than waiting for the
users/clients to make enquiries.

Taridzo Chomutare

tch023@student.uit.no, Mobile: 91563026
Page 4� of 5�

Polling results in wastage of bandwidth or we could save bandwidth by increasing the polling
intervals, but this only sacrifices application performance. Latency can only be reduced by
making the polling interval shorter so that there tends to be a trade-off between bandwidth and
latency. An HTTP binding and polling situation is illustrated below:

In the above diagram, we can clearly see how polling every X seconds can result in wastage
of bandwidth by requiring a request/response pair each time. Assuming a message is available at
the bottom-most arrow pairs after 10X seconds then it is easy to see that approximately
9*message_size is the wasted bandwidth. The previous request/response pairs were
unnecessary. In contrast, binding results in the proxy responding only when there is a message,
all the while keeping the connection open. However, it should be noted that the connection
manager will need to send an empty response if there is no activity for too. The empty response
is met with an immediate request, thus keeping the connection alive.

Interesting enough, there is no asynchronous chunking of data, for example, a post office. All the
messages are forwarded by the connection manager as soon as they arrive, nullifying the need for
any mail box. The dynamics of the coding itself is similar in both cases and the details are left
out at this point.

Conclusion

While both methods are similar in many respects, binding is a more recent technique that works
better in most situations. Binding has advantages of saving bandwidth and delivery time of
messages. By keeping the connection alive, binding reduces latency. Polling works just as well,
only having significant short comings with respect to bandwidth. If we consider the diminishing
cost of bandwidth but increasing bandwidth available, the disadvantage tend to disappear.

Taridzo Chomutare

tch023@student.uit.no, Mobile: 91563026
Page 5� of 5�

Another disadvantage is that polling introduces delays in the application. If a message arrives in
the post office just after a poll, then the application will have to wait for X seconds before it
polls again.

References

1. Ian Paterson, et. Al. “XEP-0124: Bidirectional-streams Over Synchronous HTTP
(BOSH)”, XMMP Standards Foundation, 2006.
http://www.xmpp.org/extensions/xep-0124.html

2. Joe Hilderbrand, et. Al “XEP-0025: Jabber HTTP Polling” , XMPP Standards
Foundation, 2002. http://www.xmpp.org/extensions/xep-0025.html

